
H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 66–73, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Component Based Game Development –
A Solution to Escalating Costs and Expanding

Deadlines?

Eelke Folmer

Game Engineering Research Group
University of Nevada, Reno
89503 Reno, Nevada, USA
research@eelke.com

Abstract. Expanding deadlines and escalating costs have notoriously plagued
the game industry. Although the majority of the game development costs are
spent on art and animation, significant cost reductions and more importantly
reductions in development time can be achieved when developers use off the
shelf components rather than develop them from scratch. However, many game
developers struggle with component integration and managing the complexity
of their architectures. This paper gives an overview of developing games with
components, presents a reference architecture that outlines the relevant areas of
reuse and signifies some of the problems with developing components unique to
the domain of games.

Keywords: Games, COTS, Game architectures.

1 Introduction

Developing games is an expensive and risky activity. Computer games have evolved
significantly in scale and complexity since the first game –Pong— was developed in
the seventies [1]. Technological advances in console technology, e.g. advances in
processor speed, storage media, memory size and graphic cards have facilitated
increasingly complex game play and large quantities of realistic graphics. A natural
consequence of these advances is that the cost for game development has skyrocketed.
Estimates about the average costs for developing a console game range between 3 and
10 million dollar [2]. In addition development time and team size nearly doubled the
last decade [3]. An additional problem that developers have to face is the observation
that the games is predominantly hits driven; a UK demographics study revealed that
the top 99 titles (only 3.3% of development) account for 55% of all sales [3]. The
price of computer games, on the other hand, has stayed about the same over the last
10 years and has only slightly increased (from $50 to $60) for 3rd generation (Xbox
360 / Playstation 3) games.

As the game industry continues on a path towards longer development times and
larger budgets, developers need to find ways to either sell more games or reduce the
cost of building games. One way to reduce the cost of games is to reuse particular

 Component Based Game Development 67

game components. Rather then reinventing the wheel when developing a 3d engine, a
physics engine or a network component, game developers can choose to use an
existing Commercial of the Shelf (COTS) Component. The primary motivation for an
organization to use COTS is that they will:

• Reduce overall system development costs and development time because the
components can be bought of the shelf instead of having to be developed from
scratch. Buying the component is usually cheaper as the development costs for the
component are being spread out over the multiple game titles in which the
component is incorporated.

• A higher quality of components is to be expected as one can assume that these
components are being used in different games, in different environments; more
rigidly testing and stressing the quality of the component than in a single game
setting.

• In addition a COTS based approach benefits the game industry as a whole as
successful COTS developers can focus on one particular aspect of a game e.g.
physics or 3d engines. This allows them to advance this technology at a faster rate
than when they were building games. These advances are then available for more
games to use [1], creating a win-win situation for everybody.

COTS development is not new trend in the games industry. In the past a
significant number of games have been built upon existing technologies.
Especially in the first person shooter (FPS) genre tech is heavily being reused. FPS
engines like the Doom™ engine by ID games and the Unreal™ engine by epic
games have spawned numerous successful games. However COTS have
predominantly focused on the 3d rendering engine technology and or well
understood sub domains such as audio and networking. Ten years ago only a
handful of commercial game engines were available and only a small number of
libraries for audio and networking. Because of the rapid evolution of games the
last decade, game developers now can choose from a plethora of components
dealing with various aspects of games e.g. rendering, object management, physics,
artificial intelligence and so on. Being able to choose from a multitude of
components (some of which are open source and hence free) is good for the game
development community as it will allow significant cost reductions and time to
market and will allow game developers to concentrate on the features of their game
rather than on generic features common to all games. However the success of
component based development as can be concluded from other domains such as
the web domain, will largely depend on how easy game developer can incorporate
such components in their games. In this paper we explore COTS based game
development and identify some of the issues that developers face when adopting
COTS based game development. The remainder of this paper is organized as
follows. In the next section, we present a reference architecture that allows us to
identify relevant areas for reuse. Section 3 discusses the relevant areas of reuse.
Section 4 discusses some of the problems that hamper component based game
development and discusses some research questions worth investigating. Section 5
concludes this paper.

68 E. Folmer

2 A Reference Architecture for Games

Before we discuss the different components available to game developers we need to
provide a common vocabulary with which to discuss different game implementations
and commonalities between those game implementations. In order to understand
which parts of a game are specific and which are general we propose a reference
model that allows us to understand the separations and relations between the different
parts of a game design. The highest level abstraction of any software system is called
the software architecture i.e. the fundamental organization of a system, embodied in
its components, their relationships to each other and the environment, and the
principles governing its design and evolution [4]. The software architecture is an
important artifact in the development of any system as it allows early analysis of the
provided quality of a system such as performance, maintainability. This activity is
important as these qualities are to a certain extent restricted by its architecture design
and during architecture design one can still cost effectively change design decisions.
As a specific domain of software systems ages and matures, more and more systems
are developed from different organizations, and their functionality, structure, and
behavior become common knowledge e.g. abstractions or software architectures will
surface that represent their common denominator [5]. Such an abstraction is called
reference architecture, which in essence is a software architecture, at a higher level of
abstraction. A reference architecture does not contain any implementation details so it
can be used as a template solution for designing new systems. Another benefit of
having a reference architecture is that it can point out potential areas for reuse.

Game
interface

Domain
Specific

Infra

structure

Platform
software

Fig. 1. A reference architecture for the games domain

We derived a reference architecture (RA) from two published game architectures
[1, 6], an RTS system which has been published [7] of which we extracted an
architecture design and a number of unpublished/ undisclosed systems. Our reference

 Component Based Game Development 69

architecture is inspired by the layered reference architecture for component-based
development as proposed in [8]. Their layered reference model consists of five layers;
the interface, application, domain, infrastructure and platform layer and it puts the
most specific components in the highest layer and the more general reusable
components in the lower layers. To create our reference architecture we looked at
different game architectures, we analyzed their components, and we then analyzed the
commonality of these components across different game architecture implementations
-and different game genres. Finally these components were organized according to the
layered architecture reference model proposed in [8]. We left out the application
specific layer form their model. This has resulted in the reference architecture
displayed in Figure 1. Our reference architecture consists of four layers:

• Game interface layer: the top layer in our reference architecture is comprised of
objects and components, which encapsulate the game logic. In this layer all the
game specific objects are found such as models and textures. The game user
interface, the game logic and a set of specific game objects (models, textures)
usually stored in a file system or database. The objects in the database are part of
this layer but the database functionality is provided by components from the
infrastructure layer. For reasons of simplicity we didn’t make this connection
explicit.

• Domain specific layer: This layer is comprised of components, which encapsulate
the interface to one, or more classes, which are specific to the domain of games.
Examples of such components are usually graphics, physics, network, sound etc.
These components are generally used from multiple places within the game.
Behavior of game objects such as determined by the AI or physics is usually
controlled by scripting languages such as lua or python that are part of the
infrastructure layer.

• Infrastructure layer: This layer is made up of bespoke components that are
potentially re-usable across any domain, providing general-purpose services such
as input/output, persistence, database management, scripting communication,
hardware abstraction etc.

• Platform software: this is comprised of standard or commonplace pieces of
software that are brought in to underpin the game.

The validity, accuracy and completeness of this RA are open for discussion. Our RA has
only been based on a limited number of available game architectures, which might not
represent an accurate cross section of all possible game architectures. The architectures
we derived this from did fit in this RA. Game companies tend not to disclose the
architectures of their games. Usually a RA also defines stakeholders, different views and
supported qualities and usually the RA is analyzed for its support of those qualities. In
this paper we merely outline the RA to sketch out commonalities between different game
architecture implementations and point out potential areas for reuse.

3 Areas of Reuse

As can be seen in our reference architecture six areas of reuse can be found in the
domain specific layer:

70 E. Folmer

• Network - Focuses on the communication between games and servers.
• Graphics – A collection of subsystems all related to visualizing the game.

o Rendering - Provides basic 2 or 3 dimensional rendering
(producing pixels) functionality.

o Modeling - Focuses on abstract representations of game objects
and managing those objects e.g. scene graphs.

o Animation: functionality related to creating moving images.
o Texturing& effects: functionality related to applying textures

and light effects to particular models.
• GUI – Provides the functionality to build game interfaces.
• Artificial intelligence - Provides functionality related to produce the illusion of

intelligence in the behavior of non-player characters (NPCs), such as path
finding.

• Physics - Provides physics related functionality such as collision detecting e.g.
game objects should adhere to Newton's laws of dynamics.

• Sound – libraries for modifying / generating sounds playing mp3’s etc.

Usually a game engine provides a number of such components combined in one,

however game engines are usually designed for a particular game and might not be
suitable for what your game needs. Numerous third party components can be found
which provide a plethora of functionality. We don’t provide an overview in this paper
but a complete overview can be found on http://www.gamemiddleware.org. To
provide a complete picture another important area of reuse should be mentioned that
are not included in the reference architecture.

• Tools – Tools (such as exporters and importers between different graphic
applications) are not part of the game itself but are reused between games. The
tools side of game development is unique and important .The tools may require
twice the amount of code and are a huge detail given the number of content
producers teams have these days. Usually numerous content generation tools such
as 3D studio Max or Maja are used but developers often end up having to write
numerous plugins and converters to be able to port models/ graphics from such
tools to their game engines, which is quite cumbersome.

4 Problems with COTS Development

We identified the following problems possibly limiting the success of COTS.

4.1 Components Versus Frameworks

The success of component based development in the domain of games will depend on
how easy developers will be able to integrate existing components into their games.
Looking at other domains such as web-based systems, COTS were never as successful
as they were claimed to be. COTS were considered to be the “silver bullet” [9] of
software engineering during the nineties but the development with components came
with many not so obvious trade-offs; Overall cost and development time were

 Component Based Game Development 71

reduced, but often at the expense of an increase in software component integration
work and a dependency on a third-party component vendors. As a result, COTS were
gradually absorbed into higher granularity building blocks, i.e. application
frameworks such as .NET or J2EE which don’t come with integration problems but
also do not offer much flexibility in the choice of components. A similar
argumentation holds for the game industry; game engines for FPS were among the
first reusable components. As the game industry matured more and more highly
specialized components became available for specific sub areas such as physics and
artificial intelligence. We are at a point now that if you want to build a game from
components a large number of components need to be integrated --which is not an
easy task. There seems to be a movement in the game industry towards developing
frameworks. The obvious tradeoffs that need to be made here is that building from
smaller pieces gives more control but using a large framework usually gives you the
tools and less hassle with integration. More research needs to be done to provide
developers with guidelines on how to successfully integrate components.

4.2 Complexity and Architecture Design

Another complicating factor is that games have increased in complexity, a 3d engine
10 years ago was an order of magnitude simpler to understand than it is nowadays.
One reason for this complexity might be because more and more components are
used. Since COTS developers try to design their component in such a way that it
might provide a best overall fit for a large number of games, it means that thick glue
layers may be needed to make up for the poor fit that the COTS provides for your
game. An example of a glue code is for example the code required to perform data
conversions between game components such as rendering or physics who require data
to be in a specific format [10]. Glue layers usually become a bottleneck when
performance is critical, as lots of data needs to be converted runtime. In addition
game architectures are overly complex and do not provide maintainability and
flexibility because of the spaghetti of dependencies that exist between COTS [1].
Components such as a renderer, physics, audio and artificial intelligence all need their
own local data management model (with varying degrees of detail) such as binary
spatial tree where the state of game objects is stored. When the state of a game object
changes in any of the models this needs to be updated in all the associated models,
leading to a synchronization and overhead between components. Another
complicating factor is the object centric view that most games adopt [5]; Games are
composed of game objects such as entities like cars, bullets, people representing real
life objects. Game objects are responsible for all their own data manipulation and
most COTS are just functional libraries that help the object do what its supposed to
do. With the increase in complexity of this functionality the COTS objects become
large and complex and unwieldy [1]. Current game architectures do not support
COTS development very well and possible alternatives such as data driven or black
board game architecture as proposed in [1] need to be further investigated with regard
to performance, scalability and the desired maintainability and flexibility for
component based game development.

72 E. Folmer

4.3 The “emerging” Architecture

Usually game developers pick a game engine and write the necessary glue code to
incorporate the desired COTS. If we develop our game like this a software
architecture "emerges" rather than is designed upfront. An architecture consists of
components and connectors and usually some design rationale. An architecture is
mainly used as a tool to communicate design decisions to software engineers and it
highlights the system's conceptual properties using high level abstractions which
allows early analysis of quality requirements. In this model COTS can be used as
solutions which facilitate such a design. The danger with randomly assembling a
game using components is that the resulting architecture might not be the most
optimal given the games quality requirements. There are still some degrees of
freedom with regard to component composition that are often unexplored. Software
Connectors play a fundamental role in determining system qualities; e.g. the choice to
use shared variables, messages, buffers, calls or table entries has a big effect on the
qualities of the game such as performance, resources utilization and reliability.
Abstracting and encapsulating interaction details may help fulfill properties such as
scalability, flexibility and maintainability, which may help reduce the complexity of
game architecture designs. With regard to game design this area needs to be further
explored.

4.4 The Buy or Build Decision

Because incorporating COTS is difficult and game architecture are complex, deciding
which component to select to use in your game is a difficult decision. Especially for
game related components usually deep technical knowledge is required to understand
how to successfully use and integrate the COTS [10]. Game development
requirements are very volatile and change frequently as a result some game
developers end up rewriting most of the functionality that they need from the
component and they would have been better of building the component themselves in
the end. In order for a COTS to be successful it needs to be designed in such a way
that it facilitates many needs, so it can be used in many different games. But as it is
often impossible to fulfill everyone’s needs the COTS need to provide a most
common denominator of the required functionality that might not be the best fit for
what your game needs. It will take some time to understand the component yet there
is no guarantee the COTS will actually speed up the development if after a long
investigation the COTS proves to be a poor fit and so much functionality needs to be
rewritten that it was better to develop such a component from scratch and avoiding
things like ad hoc programming and design erosion. Guidelines for analyzing
components and strict interface agreements might mitigate some of this risk but need
to be further explored.

5 Conclusions and Future Research

Developing games with components has the potential to minimize development costs
and speed up development time. However, currently game developers struggle with a
number of problems such as how to successfully integrate the component in their

 Component Based Game Development 73

game. Deciding whether the component provides what is required for the game.
Managing the complexity of their game architectures and analyzing whether the
architecture that results from component composition meets the required quality
requirements. Our future research will take a closer look at component composition
by doing a comparative study on the relative ease of integration for a number of open
source components for a Real time strategy game engine for AI research that is
currently being designed at the University of Nevada. These experiences will allow us
to develop a set of guidelines and or a game architecture that might facilitate
developing games with components.

References

1. Plummer, J.: A Flexible and Expandable Architecture for Electronic Games. Vol. Master
Thesis. Arizona State University, Phoenix (2004)

2. Grossman, A.: Postmortems from Game Developer. CMPBooks, San Francisco (2003)
3. DTI: From exuberant youth to sustainable maturity: competitive analysis of the UK games

software sector. (2002)
4. IEEE Architecture Working Group. Recommended practice for architectural description

IEEE (1998)
5. Avgeriou, P.: Describing, Instantiating and Evaluating a Reference Architecture: A Case

Study. Enterprise Architect Journal, Fawcette Technical Publications (2003)
6. Andrew Rollings, D.M.: Game Architecture and Design. Coriolis Technology Press,

Arizona (2000)
7. Michael Buro, T.F.: On the Development of a Free RTS Game Engine. GameOn’NA

Conference, Montreal (2005)
8. Mark Collins-Cope, H.M.: A reference architecture for component based development
9. Brooks, F.: The Mythical Man-Month; Essays on Software Engineering; Twentieth

Anniversary Edition. Addison-Wesley, Reading (1995)
10. Blow, J.: Game Development: Harder than you think. ACM Queue (2004)

View publication statsView publication stats

https://www.researchgate.net/publication/221406953

